Off-the-shelf bi-directional visible light communication module for IoT devices and smartphones

Alexis Duque1,2, Razvan Stanica1, Adrien Desportes2, Hervé Rivano1
1 Univ Lyon, INSA Lyon, INRIA, CITI
2 Rtone, Lyon, France

Context and goals

- Today consumers expect every **electronic products** to include **wireless connectivity**
- Manufacturing **costs** introduced by radio solutions are **non negligible**
- We propose a **low-cost alternative** using unmodified **hardware**: a cheap **LED** and a **smartphone**

Demo setup

- **Hardware**
 - Low Power Cortex M0+, LED, 6-axis sensor
 - Raspberry Pi 3, Nexus 6P
- **Demo scenarios**
 - Wake-up and configure the VLC module
 - Get battery level and sensors values
 - Authenticate through visible light

LED-to-camera

- **MCU Emitter**
- **PHY Layer**
 - 6KHz On-Off Keying
 - Manchester
- **Camera**
 - CMOS Sensor
 - Rolling Shutter Effect
 - Real time computation

Flash-to-LED

- **V-PWM Modulation**
 - Built-in flashlight
 - 50-100Hz
 - ISI avoidance mechanism
- **LED receives** and **sends** at the same time
 - **Sampling** occurs when it transmits an **OFF symbol**
 - Wired in **reverse-bias** to the MCU ADC pin
 - Briefly charged, discharged, sense the residual tension
 - **Fast** discharge: Flash ON - **Slow** discharge: Flash OFF

Evaluation

- **LED-to-camera evaluation**
- **Power consumption**
- **Flash-to-LED evaluation**

Use Cases

- **Low cost** smart **consumer electronics**
- **Wireless** smart lock
- **Universal** alternative to **NFC**